SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:gu ;mspu:(article);lar1:(cth);pers:(Hermansson Malte 1954);pers:(Wilen Britt Marie 1966)"

Sökning: LAR1:gu > Tidskriftsartikel > Chalmers tekniska högskola > Hermansson Malte 1954 > Wilen Britt Marie 1966

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Almstrand, Robert, et al. (författare)
  • Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox.
  • 2014
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 15:2, s. 2191-206
  • Tidskriftsartikel (refereegranskat)abstract
    • Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.
  •  
2.
  • Fredriksson, Johan, 1979, et al. (författare)
  • Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant
  • 2012
  • Ingår i: BMC Microbiology. - : Springer Science and Business Media LLC. - 1471-2180. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. RESULTS: The Archaea community was specialized and dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6-% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. CONCLUSIONS: The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge.
  •  
3.
  • Fredriksson, Johan, 1979, et al. (författare)
  • Impact of T-RFLP data analysis choices on assessments of microbial community structure and dynamics
  • 2014
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 15:360
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundTerminal restriction fragment length polymorphism (T-RFLP) analysis is a common DNA-fingerprinting technique used for comparisons of complex microbial communities. Although the technique is well established there is no consensus on how to treat T-RFLP data to achieve the highest possible accuracy and reproducibility. This study focused on two critical steps in the T-RFLP data treatment: the alignment of the terminal restriction fragments (T-RFs), which enables comparisons of samples, and the normalization of T-RF profiles, which adjusts for differences in signal strength, total fluorescence, between samples.ResultsVariations in the estimation of T-RF sizes were observed and these variations were found to affect the alignment of the T-RFs. A novel method was developed which improved the alignment by adjusting for systematic shifts in the T-RF size estimations between the T-RF profiles. Differences in total fluorescence were shown to be caused by differences in sample concentration and by the gel loading. Five normalization methods were evaluated and the total fluorescence normalization procedure based on peak height data was found to increase the similarity between replicate profiles the most. A high peak detection threshold, alignment correction, normalization and the use of consensus profiles instead of single profiles increased the similarity of replicate T-RF profiles, i.e. lead to an increased reproducibility. The impact of different treatment methods on the outcome of subsequent analyses of T-RFLP data was evaluated using a dataset from a longitudinal study of the bacterial community in an activated sludge wastewater treatment plant. Whether the alignment was corrected or not and if and how the T-RF profiles were normalized had a substantial impact on ordination analyses, assessments of bacterial dynamics and analyses of correlations with environmental parameters.ConclusionsA novel method for the evaluation and correction of the alignment of T-RF profiles was shown to reduce the uncertainty and ambiguity in alignments of T-RF profiles. Large differences in the outcome of assessments of bacterial community structure and dynamics were observed between different alignment and normalization methods. The results of this study can therefore be of value when considering what methods to use in the analysis of T-RFLP data.
  •  
4.
  • Fredriksson, Johan, 1979, et al. (författare)
  • Long-term dynamics of the bacterial community in a Swedish full-scale wastewater treatment plant
  • 2019
  • Ingår i: Environmental Technology. - : Informa UK Limited. - 0959-3330 .- 1479-487X. ; 40:7, s. 912-928
  • Tidskriftsartikel (refereegranskat)abstract
    • The operational efficiency of activated sludge wastewater treatment plants depends to a large extent on the microbial community structure of the activated sludge. The aims of this paper are to describe the composition of the bacterial community in a Swedish full-scale activated sludge wastewater treatment plant, to describe the dynamics of the community and to elucidate possible causes for bacterial community composition changes. The bacterial community composition in the activated sludge was described using 16S rRNA gene libraries and monitored for 15 months by a terminal restriction fragment (T-RF) length polymorphism (T-RFLP) analysis of the 16S rRNA gene. Despite variable environmental conditions, a large fraction of the observed T-RFs were present at all times, making up at least 50% in all samples, possibly representing a relatively stable core fraction of the bacterial community. However, the proportions of the different T-RFs in this fraction as well as the T-RFs in the more variable fraction showed a significant variation over time and temperature. The difference in community composition between summer and winter coincided with observed differences in floc structure. These observations suggest a relationship between floc properties and bacterial community composition, although additional experiments are required to determine causality.
  •  
5.
  • Fredriksson, Johan, 1979, et al. (författare)
  • The Choice of PCR Primers Has Great Impact on Assessments of Bacterial Community Diversity and Dynamics in a Wastewater Treatment Plant
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Assessments of bacterial community diversity and dynamics are fundamental for the understanding of microbial ecology as well as biotechnological applications. We show that the choice of PCR primers has great impact on the results of analyses of diversity and dynamics using gene libraries and DNA fingerprinting. Two universal primer pairs targeting the 16S rRNA gene, 27F&1492R and 63F&M1387R, were compared and evaluated by analyzing the bacterial community in the activated sludge of a large-scale wastewater treatment plant. The two primer pairs targeted distinct parts of the bacterial community, none encompassing the other, both with similar richness. Had only one primer pair been used, very different conclusions had been drawn regarding dominant phylogenetic and putative functional groups. With 27F&1492R, Betaproteobacteria would have been determined to be the dominating taxa while 63F&M1387R would have described Alphaproteobacteria as the most common taxa. Microscopy and fluorescence in situ hybridization analysis showed that both Alphaproteobacteria and Betaproteobacteria were abundant in the activated sludge, confirming that the two primer pairs target two different fractions of the bacterial community. Furthermore, terminal restriction fragment polymorphism analyses of a series of four activated sludge samples showed that the two primer pairs would have resulted in different conclusions about community stability and the factors contributing to changes in community composition. In conclusion, different PCR primer pairs, although considered universal, target different ranges of bacteria and will thus show the diversity and dynamics of different fractions of the bacterial community in the analyzed sample. We also show that while a database search can serve as an indicator of how universal a primer pair is, an experimental assessment is necessary to evaluate the suitability for a specific environmental sample.
  •  
6.
  • Fredriksson, Johan, 1979, et al. (författare)
  • Tools for T-RFLP data analysis using Excel
  • 2014
  • Ingår i: BMC Bioinformatics. - : Springer Science and Business Media LLC. - 1471-2105. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Terminal restriction fragment length polymorphism (T-RFLP) analysis is a DNA-fingerprinting method that can be used for comparisons of the microbial community composition in a large number of samples. There is no consensus on how T-RFLP data should be treated and analyzed before comparisons between samples are made, and several different approaches have been proposed in the literature. The analysis of T-RFLP data can be cumbersome and time-consuming, and for large datasets manual data analysis is not feasible. The currently available tools for automated T-RFLP analysis, although valuable, offer little flexibility, and few, if any, options regarding what methods to use. To enable comparisons and combinations of different data treatment methods an analysis template and an extensive collection of macros for T-RFLP data analysis using Microsoft Excel were developed. Results: The Tools for T-RFLP data analysis template provides procedures for the analysis of large T-RFLP datasets including application of a noise baseline threshold and setting of the analysis range, normalization and alignment of replicate profiles, generation of consensus profiles, normalization and alignment of consensus profiles and final analysis of the samples including calculation of association coefficients and diversity index. The procedures are designed so that in all analysis steps, from the initial preparation of the data to the final comparison of the samples, there are various different options available. The parameters regarding analysis range, noise baseline, T-RF alignment and generation of consensus profiles are all given by the user and several different methods are available for normalization of the T-RF profiles. In each step, the user can also choose to base the calculations on either peak height data or peak area data. Conclusions: The Tools for T-RFLP data analysis template enables an objective and flexible analysis of large T-RFLP datasets in a widely used spreadsheet application.
  •  
7.
  • Gustavsson, David J.I., et al. (författare)
  • Long-term stability of partial nitritation-anammox for treatment of municipal wastewater in a moving bed biofilm reactor pilot system
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 714
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2019 Nitrogen removal from the mainstream of municipal wastewater with partial nitritation-anammox (PNA) would be highly beneficial with regard to the uses of energy and organic carbon. However, the challenges of process instability, low nitrogen removal rates (NRR) and unwanted aerobic nitrite oxidation need to be solved to reach large-scale implementation. Here, we have operated pilot-scale moving bed biofilm reactors (MBBRs) for mainstream treatment, together with sidestream treatment of sludge liquor from anaerobic digestors, for over 900 days to investigate process stability, reactor performance and microbial community structure at realistic conditions. The MBBR biofilm contained stable and high relative abundances of anammox bacteria (10–32%) consisting of two major Brocadia sp. populations, and several populations of aerobic ammonia-oxidising bacteria (AOB) within Nitrosomonas sp. (0.2–3.1%), as assessed by 16S rDNA amplicon sequencing. In addition, nitrite-oxidising bacteria (NOB) consisting of Nitrospira sp. (0.4–0.8%) and Nitrotoga sp. (up to 0.4%) were present. Nitrogen was removed at a peak rate of 0.66 g N m−2 d−1 (0.13 kg N m−3 d−1) with a nitrate production over ammonium consumption of 15% by the NOB, at operation with continuous aeration at 15 °C. However, during most periods with continuous aeration, the NRR was lower (≈ 0.45 g N m−2 d−1), with larger relative nitrate production (≈40%), presumably due to problems to maintain stable residual ammonium concentrations during wet-weather mainstream flows. Changing reactor operation to intermittent aeration decreased the NRR but did not help in suppressing the NOB. The study shows that with MBBRs, stable mainstream PNA can be attained at realistic NRR, but with need for post-treatment of nitrate, since effective NOB suppression was hard to achieve.
  •  
8.
  • Liebana, Raquel, 1986, et al. (författare)
  • Combined Deterministic and Stochastic Processes Control Microbial Succession in Replicate Granular Biofilm Reactors
  • 2019
  • Ingår i: Environmental Science & Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 53:9, s. 4912-4921
  • Tidskriftsartikel (refereegranskat)abstract
    • Granular sludge is an efficient and compact biofilm process for wastewater treatment. However, the ecological factors involved in microbial community assembly during the granular biofilm formation are poorly understood, and little is known about the reproducibility of the process. Here, three replicate bioreactors were used to investigate microbial succession during the formation of granular biofilms. We identified three successional phases. During the initial phase, the successional turnover was high and alpha-diversity decreased as a result of the selection of taxa adapted to grow on acetate and form aggregates. Despite these dynamic changes, the microbial communities in the replicate reactors were similar. The second successional phase occurred when the settling time was rapidly decreased to selectively retain granules in the reactors. The influence of stochasticity on succession increased and new niches were created as granules emerged, resulting in temporarily increased alpha-diversity. The third successional phase occurred when the settling time was kept stable and granules dominated the biomass. Turnover was low, and selection resulted in the same abundant taxa in the reactors, but drift, which mostly affected low-abundant community members, caused the community in one reactor to diverge from the other two. Even so, performance was stable and similar between reactors.
  •  
9.
  • Liebana, Raquel, 1986, et al. (författare)
  • Resistance of aerobic granular sludge microbiomes to periodic loss of biomass
  • 2023
  • Ingår i: Biofilm. - 2590-2075. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Granular sludge is a biofilm process used for wastewater treatment which is currently being implemented worldwide. It is important to understand how disturbances affect the microbial community and performance of reactors. Here, two acetate-fed replicate reactors were inoculated with acclimatized sludge and the reactor performance, and the granular sludge microbial community succession were studied for 149 days. During this time, the microbial community was challenged by periodically removing half of the reactor biomass, subsequently increasing the food-to-microorganism (F/M) ratio. Diversity analysis together with null models show that overall, the microbial communities were resistant to the disturbances, observing some minor effects on polyphosphate-accumulating and denitrifying microbial communities and their associated reactor functions. Community turnover was driven by drift and random granule loss, and stochasticity was the governing ecological process for community assembly. These results evidence the aerobic granular sludge process as a robust system for wastewater treatment.
  •  
10.
  • Modin, Oskar, 1980, et al. (författare)
  • Hill-based dissimilarity indices and null models for analysis of microbial community assembly
  • 2020
  • Ingår i: Microbiome. - : Springer Science and Business Media LLC. - 2049-2618. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundHigh-throughput amplicon sequencing of marker genes, such as the 16S rRNA gene in Bacteria and Archaea, provides a wealth of information about the composition of microbial communities. To quantify differences between samples and draw conclusions about factors affecting community assembly, dissimilarity indices are typically used. However, results are subject to several biases, and data interpretation can be challenging. The Jaccard and Bray-Curtis indices, which are often used to quantify taxonomic dissimilarity, are not necessarily the most logical choices. Instead, we argue that Hill-based indices, which make it possible to systematically investigate the impact of relative abundance on dissimilarity, should be used for robust analysis of data. In combination with a null model, mechanisms of microbial community assembly can be analyzed. Here, we also introduce a new software, qdiv, which enables rapid calculations of Hill-based dissimilarity indices in combination with null models.ResultsUsing amplicon sequencing data from two experimental systems, aerobic granular sludge (AGS) reactors and microbial fuel cells (MFC), we show that the choice of dissimilarity index can have considerable impact on results and conclusions. High dissimilarity between replicates because of random sampling effects make incidence-based indices less suited for identifying differences between groups of samples. Determining a consensus table based on count tables generated with different bioinformatic pipelines reduced the number of low-abundant, potentially spurious amplicon sequence variants (ASVs) in the data sets, which led to lower dissimilarity between replicates. Analysis with a combination of Hill-based indices and a null model allowed us to show that different ecological mechanisms acted on different fractions of the microbial communities in the experimental systems.ConclusionsHill-based indices provide a rational framework for analysis of dissimilarity between microbial community samples. In combination with a null model, the effects of deterministic and stochastic community assembly factors on taxa of different relative abundances can be systematically investigated. Calculations of Hill-based dissimilarity indices in combination with a null model can be done in qdiv, which is freely available as a Python package (https://github.com/omvatten/qdiv). In qdiv, a consensus table can also be determined from several count tables generated with different bioinformatic pipelines.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy